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Vortex interaction with a moving sphere
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(Received 16 March 2007 and in revised form 22 June 2007)

This paper details the experimental results of the axisymmetric collision of a vortex
ring with a sphere. The experiments were conducted in water and a neutrally buoyant
sphere was free to move in response to the impulse delivered by the vortex ring
during the interaction. Good agreement has been achieved between kinematic data
for the sphere speed and acceleration and the behaviour of the moment and rate
of change of the moment of vorticity, measured using particle image velocimetry
(PIV). The interaction of the vortex ring with the sphere creates secondary vorticity
on the sphere surface. This initially results in a reduction of the fluid impulse and
an acceleration of the sphere. However, within the measurement window of the
interaction, the rate of increase of the positive moment of vorticity is slightly larger
than the rate of increase of the negative moment of vorticity and the sphere gradually
slows. A movie is available with the online version of the paper.

1. Introduction
Vortex rings have fascinated researchers for centuries because of their ease of

formation and the complexity of results they produce. The study of vortex rings
and ring interactions can give physical insights to more complicated flow fields that
are dominated by coherent vorticity such as fluid/structure interactions. Forces on
structures can be obtained by considering the evolution of the vorticity field, see
Lighthill (1986). Secondary vorticity, which is produced when a vortex moves over a
surface, can substantially alter the dynamics of the interaction when compared to an
inviscid analysis. To illustrate this point consider the interaction of a vortex ring with
a plane stationary surface. Inviscid analysis predicts that as the ring approaches the
surface its diameter increases asymptotically to infinity as the distance between the
ring core and the surface approaches zero. In reality, viscous effects are important,
and as the ring approaches the surface considerable secondary vorticity is generated
on the surface to enforce the no-slip condition. If the Reynolds number of the ring
is high enough this secondary vorticity separates from the surface and dynamically
interacts with the primary ring resulting in the ring rebounding from the surface,
see Walker et al. (1987), Orlandi & Verzicco (1993). Alternatively, if the Reynolds
number is low and viscous effects are important, rebound will still occur but without
the separation of the induced boundary layer, see Peace & Riley (1983).

Another simple experiment is the axisymmetric interaction of a vortex ring with a
sphere that is free to respond to the vortex ring impulse. This experiment represents
possibly the simplest possible interaction of a vortical patch of fluid with a moving
body and was commented on by Kelvin (1868). It also represents a test case for
inviscid models of force prediction and kinematic response of solid bodies that are
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Figure 1. Sphere free-body diagram showing inner surface, Si and outer surface So.

free to move in response to the pressure field created by coherent vorticity patches,
see Shashikanth et al. (2002) and Shashikanth (2006) for further discussion of inviscid
interaction models.

2. Background
The measurement of fluid loading on a body has historically been via the use

of external gauges, such as strain gauges, with the body attached to a rigid sting.
However, there are many practical situations where a body, such as a fish or bird,
is accelerating/decelerating and it is desirable to compute the fluid loading without
imposing external forces. In these situations it is advantageous to use non-intrusive
methods to evaluate the forcing levels between the fluid and the body. This can be
done by measuring the rate of change of the momentum of the fluid around the body
and can be expressed in terms of vorticity moments, see Noca, Shiels & Jeon (1999).

The purpose of this paper is to evaluate the force on a sphere that is free to move
in response to the fluid forcing. From the free body diagram in figure 1, the net
force on the control volume is the surface integral of pressure and viscous stresses
on the outer section, So, the inner section, Si , and the umbilical. The force balance
across the umbilical cancels. No external forces are acting on the control volume
(this represents a simplification of the experimental configuration described in § 3).
Using the Reynolds transport theorem one is left with the following force–momentum
balance:

F/ρ = − d

dt

∫
V (t)

u dV +

∮
So(t)

n̂ · [−pI + T] ds (2.1)

The sphere has a no-slip, no-fluid-penetration condition on its surface; p and T
are the pressure field and viscous surface stress on the outer boundary of the control
volume So(t); u is the velocity field of the fluid inside the control volume measured
in an inertial frame. The force F is the force that the fluid exerts on the sphere and
represents the integration of the pressure field and surface shear stress over the inner
control surface Si(t). Using the vector identity, obtainable from Stokes’ theorem (see
Saffman 1992 and Truesdell 1954),∫

V

x × (∇ × u) dV = 2

∫
V

u dV +

∮
S

x × (n̂ × u) dS (2.2)

and neglecting the term
∮

So(t)
n̂ · [−pI + T] ds, whose contribution in our experimental

set-up is small as the walls in the experiment are distant, equation (2.1) can be
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transformed to

F/ρ = −1

2

d

dt

∫
V (t)

x × ω dV +
1

2

d

dt

∫
Si (t)

x × (n̂ × u) dS. (2.3)

The first term represents the time-varying moment of vorticity in the flow volume.
In the case of bounded vorticity distributions, such as the vortex interacting with the
sphere, the integration domain can be finite in size. The calculation of this integral
requires knowledge of the time variation of the moment of vorticity distribution. The
position vector x is grounded in an inertial frame. The second integral is related to
the behaviour of the inner surface of the control volume. In the case of the moving
sphere this integral is solved with knowledge of the temporal behaviour of the sphere.
As the fluid no-slip condition applies at the surface of the inner control volume, u is
equal to the sphere velocity. The first term in equation (2.3) is often referred to as the
vortex force and the second term is related to the movement of the body, the added
mass. If the interaction is axisymmetric and swirl-free, the motion of the sphere is
along the x-axis, as defined in figure 1, then (2.3) reduces to the force on the sphere
in the x-direction as

Fx/ρ = −1

2

d

dt

∫
V (t)

(x × ω)xdV − dUx(t)

dt

πD3

6
(2.4)

where D is the sphere diameter and Ux is the sphere velocity. The force the sphere
experiences, Fx , can be considered to be decomposed into a force due to the vorticity
distribution and an added mass force. This relationship has been noted previously
in the study of loadings on a cylinder, see Govardhan & Williamson (2000) and
Leonard & Roshko (2001).

3. Experiments
Experiments were conducted in the vortex ring generator tank described in Allen &

Auvity (2002) with a water temperature of 20 ◦C. Brief details will be provided here.
To produce a vortex ring a piston was moved through an 5.08 cm diameter acrylic
tube. A plate was fixed to the end of the tube with a diameter of 4.15 cm. The speed
of the piston was 4.6 cm s−1. Particle image velocimetry (PIV) was used to measure
the ring invariants: ring circulation Γ , impulse/density I and kinetic energy/density
E. These groups are reorganized to form two non-dimensional parameters: the non-
dimensional kinetic energy Ẽ = E/(Γ 3/2I 1/2) and the non-dimensional circulation
Γ̃ = Γ/(I 1/2U

2/3
t ). Ut is the translational speed of the ring, see Allen & Naitoh

(2005). Prior to running experiments that involved colliding the vortex ring with
the sphere, measurements were made of the ring moving in the tank without the
sphere being present. The non-dimensional energy of the ring was Ẽ = 0.3 and
non-dimensional circulation was Γ̃ = 2.2. The translational speed of the ring was
17 mm s−1 and the ring radius was 64 mm which results in a ring Reynolds number
based on diameter and speed of Re = 1147. The Reynolds number based on the ring
circulation was Γ/ν = 2275 and the approximate (Norbury 1973) non-dimensional
radius was α = 0.45.

The sphere was suspended in the tank via a 4 m long, 0.2 mm thick fishing line.
The section of the line supporting the sphere in the water tank was 0.07 mm thick
Wollaston wire to minimize drag. By progressively releasing bubbles, conservatively
estimated to have a diameter of order 2 mm the sphere was trimmed with light
tapping to be slightly negatively buoyant. The sphere was able to be repeatedly
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trimmed to within two bubbles of neutral buoyancy. The specific gravity of the
sphere was estimated as 1.0004. The sphere was located 40 cm away from the vortex
generator in an effort to have a ring at equilibrium, moving with steady velocity,
before interacting with the sphere. The data collected during the interaction were:

(i) measurements of the trajectory of the sphere from video images;
(ii) flow visualization to measure the location of the vortex core during its

interaction with the sphere;
(iii) PIV to measure the unsteady axisymmetric velocity field during the interaction.

A detailed description of the PIV system used is contained in Allen & Smits (2001).

4. Results
4.1. Flow visualization

The sequence of flow visualization images in figure 2 shows the interaction of the
vortex ring with the sphere. The visualizations were achieved using fluorescent dye
in water and an argon-ion laser. The images in figures 2(a) and 2(b) show the ring
deforming as it approaches the sphere. As the vortex passes around the sphere,
significant secondary vorticity is generated on the surface of the sphere, which
separates and evolves around the primary ring. This separated secondary vorticity
can be seen clearly in figures 2(c) and 2(d). As the vortex ring passes over the sphere
secondary vorticity is deposited in its wake as what appears to be a second vortex
ring, figure 2(e) and (f). (A movie is available with the online version of the paper).

4.2. Kinematic data

Data for the location of the sphere and vortex core are shown in figure 3. The
initial motion of the sphere, figure 3(a), is very repeatable; however as the sphere
approaches its maximum displacement the curves become somewhat scattered. This
was due to non-axisymmetric collisions. An axisymmetric collision, such as that shown
in figure 2 was hard to achieve. When a perfect collision occurred it was very clear
from experiments. In these cases the ring retained its coherent identity and progressed
in the x-direction, albeit with a larger diameter, after it has passed around the sphere.
The times listed for the flow visualization images, figure 2, and the trajectory data,
figure 3, are synchronized. Figure 3(b) shows the mean curve for the displacement
and the associated values for the sphere velocity and acceleration. It should be noted
that the peak acceleration of the sphere occurs before the induced secondary vorticity
separates from the sphere surface. Figure 3(c) shows data for the trajectory of the
vortex core as it passes over the sphere. The ring diameter appears to reach an
approximately constant value after it has passed the sphere that is order 50% larger
than the original diameter. The production and separation of the secondary vorticity,
figure 2(b–d), occurs when the sphere has reached a third of its maximum streamwise
position.

4.3. Effects of gravity and line drag

The sphere diameter is 3.76 cm and its mass was 27.8 gms and hence the peak forces
that are applied to the sphere during its motion are 7.8×10−5 N. An obvious question
that arises concerns the role of the line tension and line drag on the sphere motion.
For the images shown in figure 2(a–d) the sphere is displaced of order two diameters.
With a line tension force of order 8 × 10−5 N, based on the sphere specific gravity,
the force component that opposes displacement from equilibrium in the x-direction
is order 2 × 10−6 N. The line supporting the sphere also has a drag component. If the
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Figure 2. Dye visualizations at t = (a) 9.3, (b) 11.0, (c) 11.9, (d) 12.7, (e) 13.6, (f) 17.8 s.

maximum speed of the Wollaston wire is taken as 1.5 cm s−1 it results in a Reynolds
number of order unity and an associated drag coefficent of order ten. The associated
drag force on the line is then order 7 × 10−6 N. Hence these two factors are small in
terms of contributing to the sphere dynamics, even with conservative estimates.

4.4. PIV

A temporal sequence of PIV velocity fields were obtained with a time �t between
image pairs of 0.354 s. The measurement interval was selected such that it spanned
the production and separation of the boundary layer from the sphere surface as the
vortex ring passed around the sphere. Figure 4 shows the sequence of velocity fields
and their associated vorticity fields. The azimuthal vorticity fields were generated by
fitting a spline to the velocity data, as described in Allen & Chong (2000). The
vorticity fields in figure 4 have been normalized as ωθ = ΩθD

2/ν. Figure 4(a) shows
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Figure 3. (a) Trajectory, (b) velocity and acceleration of sphere, and (c) vortex core
trajectory.

that as the vortex approaches the sphere it has produced an eruption of secondary
vorticity from the sphere surface. As the interaction continues the vortex diameter
increases in response to the presence of the sphere and the production of secondary
vorticity on the sphere surface. The secondary vorticty can be thought to act as
a ‘virtual surface’. In figures 4(b) and 4(c) the secondary vorticity plume appears
to wrap around the front of the advancing vortex. In figure 4(d) the secondary
vorticity front appears to have pinched off, with the lead section of the front
moving in the reverse direction to the vortex ring. The pinched-off section revolves
as a satellite around the outside of the vortex ring core and is moving toward the
ring wake. This phenomena can also be observed in the flow visualization images,
figures 2(d) and 2(e). The remainder of the secondary front appears as a plume
interacting with the vortex and retains its link with the sphere surface. In figures 4(c)
and 4(d) the vorticity in the primary core has lost its elliptical form owing to the
interaction with the secondary vorticity front. The overall levels of secondary vorticity
strength are half to two-thirds that of the primary core, indicating it is dynamically
significant.

4.5. Correlation of experimental data with force balance equations

As stated earlier, the goal of this work is to reconcile the kinematic motion of a
body with the behaviour of the vorticity field it is interacting with. Using the stated
assumption of the absence of a component of line tension, line drag and wall effects
and using Fx/ρ = (dUx/dt) · πD3/6 equation (2.4) becomes

D3

3

dUx

dt
= − d

dt

∫ ∫
Ωθ (r, θ)r2 dr dx. (4.1)

The integration of the moment of vorticity is performed over the fluid domain
only. Reorganizing the integral in equation (4.1) into a non-dimensional form using
the sphere diameter D and viscosity to normalize and then integrating with respect
to time yields an expression for the non-dimensional velocity of the sphere:

u∗
x(t) = DUx(t)/ν = −3

∫ ∫
ω∗

θ (r
∗, x∗)r∗2dx∗dr∗ + κ (4.2)

where the integral is performed over the fluid domain. Equation (4.2) is interpreted
as the conservation of the combined linear momentum of the fluid plus the sphere.
The constant of integration, κ , can be interpreted as the impulse (vorticity moment)
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Figure 5. (a) Measured position, velocity and acceleration of sphere from PIV images and
(b) comparison with vorticity moments and rates of change of vorticity moments.

of the vortex ring when the ring is remote from the sphere and the sphere essentially
at rest, i.e. u∗

x = 0.
Figure 5(a) shows kinematic data for the sphere position, velocity and acceleration

collected from the PIV images. Figure 5(b) shows the time-varying moment of vorticity
integral compared with the ring speed over the time interval that all the coherent
vorticity is in the PIV image plane. The general shape of the curves is the same;
however the moment-of-vorticity curve is offset. This is a result of not knowing the
value of the integration constant, κ . Figure 5(b) also shows a comparison of the
acceleration of the sphere and the time rate of change of the vorticity moment.
Agreement is good, within experimental error bounds. This also provides further
evidence that the effects of gravity and line drag are minimal. The results for time
rate of change of vorticity moment and sphere acceleration are obviously more noisy
than the result for the vorticity moment and sphere velocity, but we have been
relatively successful in evaluating indirectly the forcing levels on the sphere from
measurement of the vorticity field.

To estimate the integral constant in equation (4.2) an experiment was conducted
without the sphere in place, i.e. this represents the situation where the vortex ring
is remote from the sphere and hence u∗

x � 0. The normalized result for the vorticity
moment integral was 411. Hence by adding this constant to the vorticity moment
when the sphere and vortex interact we have a complete description of terms in
equation (4.2) and good agreement with the data for the velocity of the sphere,
figure 6(a). The non-dimensional time scale t∗ in figure 6 has been normalized as
tν/D2. Error bounds have been shown on the data for vorticity moment. The main
source of error in evaluating the moment comes from the measured vorticity. Other
sources of error, such as establishing the time, centreline of interaction and moment
arm radius are order 1%. The accuracy of the vorticity measure depends on the
accuracy of the velocity measurement technique. With PIV we estimate the error in
velocity as 3% using sub-pixel curve fits to the correlation function. Based on the
spatial resolution of our velocity grid and the global spline technique of Spedding &
Rignot (1993) we have an associated error in vorticity of order 15%.
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Figure 6. (a) Comparison of non-dimensional sphere velocity and that predicted from the
vorticity moment and (b) behaviour of positive and negative components of the vorticity
moment.

The role of the secondary vorticity in the dynamics of the interaction can be
interpreted through the behaviour of the vorticity moment. Figure 6(b) shows the
temporal behaviour of the moment of vorticity of the primary vortex ring and the
moment of vorticity of the secondary vorticity plume. The viscous length scale,

√
νt ,

for the initial period of interaction of the vortex with the sphere and the eruption of
secondary vorticity is order 1.5 mm. This is small in relation to the size of the vortices
that are interacting and therefore we can consider the dynamics of the interacting
patches from an inviscid standpoint. In order for the sphere to be accelerated to
the right a negative rate of momentum loss of the fluid is required. Alternatively if
we consider the interaction from the behaviour of impulse (velocity), as the sphere
moves to the right from rest the fluid must have a reduction in impulse. This can be
achieved in two ways via the moment of vorticity integral: either with the production
of secondary vorticity on the sphere surface which will have the effect of increasing
the vorticity moment integral and/or the modification of the path of the primary
vortex. The primary vortex would need to reduce its diameter during its interaction
with the sphere in order to reduce its negative contribution to the vorticity moment.
This was not documented in figure 3(c). When the vortex ring is passing over the
sphere its diameter is increasing, resulting in a reduction in the strength of the total
vorticity moment. Both effects compete with each other while the ring is passing over
the sphere. The velocity of the sphere shows a weak decrease, indicating that the
dynamical effect of increasing the diameter of the primary ring is slightly stronger
than the effect of production and ejection of secondary vorticity into the flow. A
further interesting point from the flow visualizations and kinematic data in figure 3
is that the sphere reaches a point where it stops and reverses, implying that the
fluid impulse has been recovered and is increasing. This can be reconciled with
the observation that the diameter of the primary vortex core has increased during
the interaction and appears to maintain its diameter once it has passed the sphere.
It appears from the flow visualizations that significant secondary vorticity does not
continue to be produced once the vortex ring has passed around the sphere. However
care must be taken with this interpretation as no quantitative information is available
for the vorticity moment during this period. The large displacement of the sphere
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away from its starting position introduces the possibility of the line tension force
contributing to the sphere dynamics.

5. Conclusions
This experimental study has been successful in relating, for the first time, the

behaviour of the moment of vorticity to the kinematic behaviour of an object in
fluid that is free to move and responds only to the forcing applied by the fluid. This
has been achieved via a comparision of the experimental data with a control volume
analysis to the problem of a vortex ring interacting with a sphere that is free to
respond to the vortex impulse. The results for the velocity and acceleration of the
sphere are in good agreement with the experimental results for the behaviour of the
vorticity moment. The prediction of sphere acceleration from the rate of change of
the vorticity moment are somewhat noisy, indicating the degree of precision that will
be required to use this non-invasive technique to measure fluid loadings on untethered
bodies in the future.

The authors would like to acknowledge the contributions of Dr Ferreira de Sousa
and Zachary Smith.
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